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Abstrac t - -The capillary instability of  an infinite axisymmetric viscous liquid column in an immiscible 
medium is investigated. The process of  disintegration is simulated numerically using a (second-order) 
finite-difference method applied to the 'vorticity-stream function'  formulation of  the Navier-Stokes 
equations. These equations and corresponding boundary conditions are written in there detailed form 
including convective terms in Navier-Stokes equations and nonlinear terms in the mass and momen tum 
conservation equations at the unknown interface. Then the evolution in time of a given cosinusoidal 
disturbance is studied subjected to the action of the nonlinear effects. In these conditions the formation 
of a satellite drop attached to the main drop is observed. In the case where the liquid column is submerged 
into a low density inviscid fluid, the basic characteristics of  the column disintegration such as drops sizes 
and breakup time are in a good agreement with those calculated by previous authors.  New results are 
obtained for the instability parameters of  a liquid column surrounded by another viscous fluid. © 1997 
Elsevier Science Ltd. All rights reserved. 

Key Words: jet in liquid-liquid systems, capillary instability, numerical simulation of jet disintegration, 
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1. I N T R O D U C T I O N  

In the recent years the capillary jets have been used in many practical applications such as printing, 
particle sorting, dispersing liquids, fibers spinning, etc. Most of these applications are based on the 
effects of jet instability, which gives rise to growing disturbances that finally break up the jet into 
drops. 

Since 1878 when Rayleigh has published the first theoretical study of the stability of an inviscid 
liquid column into a nearly-zero-density inviscid fluid, the problem of capillary jet instability has 
been treated in numerous approaches. It is out of the scope of our paper to present a detailed review 
on the papers contributing to jet instability investigation. We focus mainly on some basic 
theoretical works, referencing for the others (including experimental papers) to several useful 
reviews. For the aims of the present paper it would be convenient to combine the previous works 
into two groups. 

To the first group, we relate papers where the instability is studied for jets on which the 
surrounding fluid has no effect. As shown by Rayleigh the cylindrical column in such conditions 
is stable for all purely non-axisymmetric disturbances; however, in respect to axisymmetric 
disturbances it is stable or unstable, depending on whether the wavelength is less or greater than 
the circumference of the undisturbed cylinder. Many authors (see, e.g. the survey of McCarthy and 
Molloy 1974), among them, Weber (1931), studied the axi-symmetrical breakup of a liquid jet, 
including the effect of the viscosity. 

To the second group those papers could be related in which at least some of the effects of the 
surrounding fluid is included in the analysis of the jet instability. The basic work in this group is 
the paper of Tomotika (1935) in which the relationship between the growth rate and the 
wavenumber of the disturbance (the dispersion equation) is derived in a general form, although 
the author applied it for some particular cases. However the scope of the Tomotika equation could 
be extended as clearly shown in the paper of Lee and Flumerfelt (1981). In the latter an unified 
analysis of the Tomotika equation is proposed based on introducing different characteristic time 
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scales. This analysis shows that classical dispersion equations of Rayleigh and Weber mentioned 
above in the first group could be derived from Tomotika general equation, as well as many others, 
related to the second group. In the paper of Mikami and Mason (1975), the Tomotika analysis 
is extended on the liquid column submerged in a fluid which is contained in a tube. 

It should be noted, however, that all of  the abovementioned approaches remain in the scope of 
the linear stability theory. Furthermore it is assumed that the jet surface is disturbed by infinitely 
small disturbances of the form 

6 = 6o exp(Qt + ixz)  [1] 

where x denotes the wavenumber, Q--growth  rate, 6--ampli tude of the perturbation. Then the 
analysis of the disturbance evolution is performed by neglecting all the terms quadratic in respect 
to the initial amplitude J0. 

Weakly nonlinear analysis has been conducted first by Yuen (1968) for an inviscid jet of the first 
group. He carried out the solution up to third order in respect to & and succeeded to predict the 
existence of satellite drops as observed by Donnelly and Glaberson (1966). Except for some 
one-dimensional approaches (e.g. Bogy 1979) the effect of the viscosity on nonlinear jet instability 
has been studied only numerically starting by the pioneering work of Shokoohi (1976) and 
subsequent calculations of Nichols et al. (1981), Fromm (1984), Bousfield et al. (1990), Ashgriz 
and Mashayek (1995). In the latter a very comprehensive review of the previous works is presented 
concerning liquid jets of the first group. 

The papers of Hammond (1983), and Newhouse and Pozrikidis (1992) should be mentioned in 
the second group in which the disintegration process is studied for a configuration of a liquid 
column surrounded by a coaxial layer of another liquid contained in a cylindrical tube. These 
papers are focused mainly on the behaviour of the layer and are based on the Stokes equations 
of motion. In the work of Tjahjadi et al. (1992) the interfacial tension driven fragmentation of a 
very long thread filament is investigated for better understanding the role of filament instability 
on satellite drops size. 

Our paper presents a direct simulation of the process of disintegration of a viscous liquid column 
in another immiscible liquid bounded by a tube. A complete numerical solution of the full 
Navier-Stokes equations is proposed, which gives both qualitative and quantitative results. The 
applicability of the numerical procedure is verified in comparison with the results of the linear 
stability analysis and those of Shokoohi (1976) and Shokoohi and Elrod (1987) in the case of a 
liquid column in an inviscid nearly-zero-density fluid. For a column in a viscous liquid phase, the 
verification is done on the basis of the results of Tomotika (1935) and Mikami and Mason (1975). 
The numerical results for the main and satellite drop sizes are compared as well to the 
corresponding experimental values as measured by Kitamura et al. (1982), when the relative 
velocity of both phases is maintained equal to zero. 

It is shown that given disturbance of type [1] retains a cosinusoidal form at the first stages of 
its evolution in time. Due to the appearance of multiple harmonics the surface profile is transformed 
to a noncosinusoidal form, which contains a satellite drop attached to the main one. The size of 
the satellite is strongly connected to the wavelength. The amplification rate of the temporally 
growing disturbances is time dependent except for the initial time interval. 

2. PHYSICAL MODEL AND EQUATIONS 

We study the liquid column instability in respect to the so-called temporally growing 
disturbances. That is, the liquid column is infinite in both directions (it has neither beginning nor 
end). More than that, the disturbed flow is periodical along the column axis with a given wavelength 
2. Both the liquid column and the surrounding fluid are supposed to be incompressible, Newtonian 
and immiscible. Gravity effects are neglected. 

Figure I shows a periodic section of the axisymmetric liquid column with a single wavelength 
disturbance (which will be considered as fundamental or first harmonic disturbance). The 
continuous phase is closed at r = R ...... by a rigid cylinder. Consequently this ensures a fixed outside 
boundary in the computational domain. The domain is bounded elsewhere by the axis of symmetry 
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Oz and two cross-sections at a distance one wavelength of the prescribed disturbance. However 
the influence of the wall on the column instability characteristics remains to be studied. 

Owing to the symmetry of the problem the hydrodynamic equations are written in a cylindrical 
coordinate system with z and r being the corresponding axial and radial coordinates. The 
undisturbed liquid column radius RN, and the capillary time to = dpjR3/~t2 are chosen as 
characteristic length and time respectively. Hence the pressure is scaled according to the quantity 
a~z/RN. Hereafter, the streamfunction-vorticity formulation of the equations will be used. The 
stream function ~, and the vorticity co are defined as 

1 c~j 1 6~j 
U,= r Or' ~ = 7 ~  [2] 

o~ aG 
coJ- 8z Or [3] 

where U and V are the axial and radial components of  the velocity, respectively. In [2] and [3], 
subscript j = 1 refers to the liquid column, while j = 2 refers to the continuous phase. Subscript 
j will be omitted when admissible. 

2. I. Nondimensional governing equations 

Vorticity transport  equation could be written in the following form 

+ ar + c3z - -Oh1_ _ _ ~  ~ +  r Or r 2 + a z 2 J - - r  2 c~z [41 

where Oh~ is the liquid column Ohnesorge number (Oh, = #~/x/~RNa~:). Vorticity co is connected 
to the stream function ~b by the expression 

: - + [5] 
r r 0r 8 r  2 )" 

The above-mentioned equations must be applied for both the liquid column and the continuous 
phase. 

2.2. Boundary conditions at the interface 

Using the kinematic requirement that the surface of the liquid column has to be constituted of 
the same liquid particles, one obtains the equation for the radius R~ of the form 

vaR  
0-~- + s ~z = V~ [6] 

ir 

n2 
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Figure 1. Geometry of the flow under consideration: a periodic section of the axisymmetricjet with a single 
wavelength disturbance. The continuous phase is closed at r = R.,,,, by a rigid cylinder. 
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where R~ is considered as a function of the time t and axial coordinate z. Subscript s will be used 
for the points at the column surface. At the latter both nonslip and zero-mass flux condition must 
be satisfied 

where by definition 

~U~ = 0 [7] 

E = 0 [81 

~G~ = G i s -  G2~. [9] 

Additional conditions follow from the balance of tangential and normal stresses at the both sides 
of the interface, provided surface tension is taken into account. Thus for tangential stress condition 
we have 

I ~ [ ( @ r  V - ~ - ) s i n 2 ~ + ( ~ + ~ ) c o s 2 c ~ l l = 0  [101 

where e (as shown in figure 1) is the angle between the tangential unit vector r and the axial 
direction. The corresponding normal stress condition is 

{ P  - Oh, (~) [2(~- rV cos: c~ + ~ sin2 c~ ) 

{0 V + ~?U'~sin ] 1  ( c ° s ~  ~:R~ ) - - \ # z  a r J  2~ = \  R~ az 2 cos3~ . [111 

Because of the presence of the surface tension term in the right-hand side of [11], the pressure 
difference ~P~ could not be easily eliminated as requested by ~ -  ~o form of Navier-Stokes 
equations. To do so, [11] must be differentiated along the surface with the pressure derivatives being 
substituted by their expressions through Navier-Stokes equations. It should be mentioned that this 
transformation involves time derivatives of the velocity components in the boundary condition [11]. 
(For more details concerning condition [11], see appendix B.) 

2.3. Boundary conditions at external boundaries 

Due to the symmetry of the flow and the boundedness of the velocity, at the column axis (r -- 0) 
the following conditions could be imposed 

e), = 0 [12] 

@1 ~ 0 .  

At the wall (r = Rmax) the zero-slip and zero-mass flux conditions must be satisfied: 

[131 

1 (02~:'~ [14] 

1112 = 0. [15] 

2.4. Periodicity boundary condition 

At the ends of a liquid column segment of one wavelength, 

F(0, r, t) = F()~, r, t) 

is imposed, where F is any flow dependent variable or its derivative. 

[161 
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2.5. Initial condition 

The instability of the liquid column in respect to disturbances of small amplitudes could be easily 
obtained by analysing the linearized form of the equations and boundary conditions presented 
above. For the particular case of unbounded continuous phase, Tomotika (1935) derived an 
analytical solution of the problem as well as the corresponding dispersion relation, connecting the 
amplification rate Q to the wavenumber x. When this solution is applied, the disintegrated column 
appears as a chain of drops of uniform size. However, the observations of the jet breakup show 
that the larger drops are separated by smaller ones, usually called satellites. The appearance of the 
latter could be attributed to the nonlinear terms in the equations of motion and in the boundary 
conditions at the moving interface. 

On the basis of the preceding discussion we have assumed that the initial perturbation of the 
column appears in the form predicted by the linear instability analysis. For simplicity the initial 
perturbation is taken in the form of a single harmonic (see [1]), although any combination of 
harmonics could be involved. The dispersion equation (see [26] below) as well as the corresponding 
initial vorticity and stream functions are derived from linearized equations and boundary 
conditions. 

3. NUMERICAL PROCEDURE 

In what follows we will focus our attention on numerical solution of the governing equations 
as they appeared in the preceding section. This solution is based on the application of the method 
developed by Peaceman and Rachford (1955) known as Alternating Direction Implicit method 
(ADI). In particular, the ADI method has been successfully used by Shokoohi (1976) and Shokoohi 
and Eirod (1987) for solving the vorticity transport equation inside the jet. We have extended the 
method to the continuous phase vorticity equation, as well as for treating the stream 
function-vorticity relation in both phases. The spatial derivatives in [19] and [20] below are 
alternatively treated implicitly at one-half time step and explicitly at the next half-step. Using 
centered-difference approximations we have obtained tridiagonal systems of linear algebraic 
equations along each coordinate line which is solved by Thomas algorithm. A cyclic elimination 
method is implemented in the ~-direction to exploit the periodicity of the boundary condition in 
this direction. In the vorticity transport equation the e~ term is treated following the procedure 
implemented by Ryskin and Leal (1984). Although at the end of this section the sequence of the 
steps of the numerical algorithm is listed, some details still remain to be discussed. 

As a first step toward the numerical procedure we replace the radial coordinate r by the new 
independent variables 

( j -  1 )Rmax  - -  r [17] 
~J = U -  1)gm.x- Rs 

where 0 ~< q~ ~< 1 and 1 /> v/2 ~> 0, and simply introduce new symbols for the time and axial 
coordinate 

= t ,  ~ = z .  [18] 

The transformation [17] enables us to avoid the use of deformable mesh, keeping one of the mesh 
lines fixed along the interface. Using the new coordinate system one obtains: 

Vorticity transport equation in the form 

8~ 82e~ 8o~ 82~ 8o~ 82e~ 
[19] 

~-e~ relation 
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Velocity components 

~ ,  _ &b U = g 3 8 ~  [211 
v : + 8N 

The above written equations stand for both the dispersed and the continuous phases. The 
coefficients a~, b~ and g, as well as the transformation matrix of the derivative operators are given 
in appendix C and appendix A, respectively. It is worth noting that mixed derivatives have appeared 
in [19] and [20], being a result of the nonorthogonality of the new coordinate system. In our method, 
these derivatives are treated explicitly. 

The corresponding conditions at the interface are written in respect to the same independent 
variables: 

Tangential stress condition 

Modified normal stress condition 

[22] 

The kinematic condition [6] is now transformed to 

8< 8~ 
8T = 2 8 ~  ,,:l 

as well as the boundary condition [14] 

[24] 

82~2 
~o2 = bw ~ .  [25] 8q_~ 

The remaining conditions [12], [13], [15] and [16] are of the same form but they must be applied 
for the corresponding value of q. 

For  the equations and boundary conditions, we use a uniform finite-difference grid of step sizes 
Aq and A~ in corresponding directions. The scheme is centered in space and forward in time. The 
method is necessarily iterative due to the dependence of the coefficients a,, b~, c~, & and gl on the 
unknown column radius [24] and its derivatives up to the third order. As mentioned above the 
initial approximation of the column radius is of the form [1]. Then the numerical solution follows 
time evolution of the initial disturbance which remains periodical in axial direction. At any time 
step the updated radius is differentiated numerically by using cubic splines. 

Here follows the (iterative) numerical procedure: 

Step 1: increase the time. 
Step 2: compute a new surface profile R~ using the kinematic condition [24]. 
Step 3: differentiate Rs. 
Step 4: solve the vorticity transport equation [19, j = 1] for the column (the vorticity values of 

the preceding iteration are used at the interface). 
Step 5: solve the vorticity transport equation [19, j = 2] for the continuous phase. 
Step 6: approximate the vorticity on the rigid wall using the nonslip condition [25]. 
Step 7: solve the ~-~o relation [20, j =  1] for the stream function in the column (a 

pseudo-transient approach is used by adding a fictitious time derivative of ~ in ~b-¢o relation. This 
enables us to transform the latter to a form convenient for using ADI method). 

Step 8: solve the ~-~o relation [20, j = 2] for the stream function in the continuous phase. 
Step 9: determine the column vorticity at the interface using tangential stress equation [22]. 
Step 10: determine the continuous phase vorticity at the interface by approximating the 

corresponding ~-~o relation [20, j = 2] on the interface. 
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Step 11: compute the velocity component  values [21] everywhere. 
Step 12: determine the stream function value at the interface using the modified normal stress 

condition [23]. 
Step 13: go to step 2 if the convergence criterion is not satisfied (if necessary reduce the time 

step and correct the total time); go to step 1 if the time step is not less than a given value. 
Stop. 

4. RESULTS 

4. I. Numerical strategy 

Since the column radius Rs depends on the values of  ~ at the column surface, the iterations in 
q; and o~ are coupled to the iterations in the interface position. Similar coupling has been 
successfully implemented by Asaithambi (1993). For  the current time step the calculation is 
terminated whenever ~o ~< E with ~o = maxr  (~0r), where ~or = max~.k(]~, -- ~,k- ~]) is the maximum 
error in the 'field' of  F related to two consecutive iterations. Here F denotes any of the unknowns 
of  the problem while F~k is the corresponding grid function related to the sth iteration. In some 
cases, to preserve the solution from very abrupt  variations it is necessary to reduce the time 
increment mainly near the column breakup time. Then the time step is divided by two whenever 
a given number of  iterations is attained before the above accuracy criterion is satisfied. The 
calculation ends off for a given case when the time step becomes too small (At ~ 10 5). At this 
stage in general, the nondimensional radius of  the column at the minimal cross-section is less than 
0.05 (in some cases, the minimal radius is of  about  0.005): the corresponding section and total time 
are considered as breakup point and time, respectively. For all computations performed with the 
chosen Aq, A~, and At, no indication of numerical instability has been noticed. Tests for accuracy 
have been performed according to Shokoohi (1976): a twofold variation in A~ and a fivefold 
variation in Ar make no significant difference. Typically we use e - -  10 -6 and initial time step 
Az = 0.05. Concerning the space steps, for all the cases presented here we have Aql = 0.1, 
At/2 = 0.025; A~ = 0.5 for x < 0.7 and A~ = 2/20 for x >~ 0.7. 

Further on we present the results obtained for two liquid-fluid systems. The first system concerns 
a water column in a low density nonviscous gas referred below as water-gas system. The latter 
is used to test our results to some available experimental and numerical results of  other authors. 

In the second system the column of water is submerged in another immiscible liquid; in particular 
dodecan. Some selected examples of  the behaviour of  the unstable column are discussed. Present 
numerical results are compared with the experimental results of  Mikami and Mason (1975) and 
Ki tamura  et al. (1982). 

4.2. Liquid-gas system 

The characteristic parameters of  the system are given in appendix D. The value of the column 
radius is RN = 0.00175 cm and the initial amplitude in [1] is 60 = 0.02. The initial stream and 
vorticity functions are evaluated using Weber (1931) solution. 

Figure 2 compares two column profiles for the wavenumber (x ~ 0.7) related to the maximal 
growth rate in linear theory approximation. One (solid line) is obtained by Shokoohi (1976), the 
other (dash l ine)--by our approach. The comparison shows close agreement between the shapes 
of  the interfaces. The error in the final (or breakup) times is less than 2%. 

One of the basic characteristics of  the column instability is the time interval in which the column 
remains unbroken, known as breakup time. (The latter could be easily related to the unbroken jet 
length, a parameter  widely used in many applications.) Several curves 'wavenumber-breakup time" 
are plotted in figure 3 in order to compare our and Shokoohi (1976) numerical results. The breakup 
times show a close agreement. In the same figure we display the breakup times given by the linear 
stability analysis (here par t icular ly--by the Weber 1931 solution), as well as the corresponding 
dispersion x-Q curve. The shortest breakup time is found approximately at x = 0.7, which is in 
accordance to the classical Rayleigh result (note that the water viscosity is relatively small). 

The growth rate curve has a maximum at x m 0.7. According to the linear theory analysis there 
is no amplification of the perturbation for x = 0 (wavenumber of  the infinite wavelength) and x = 1 
(the cut-off wavenumber). However in the nonlinear simulation, we observed some growing of the 
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Figure  2. In s t an taneous  interface profile proceding co lumn breakup .  ( W a t e ~ g a s  system: /)0 = 0.02, 
RN = 0.00175 cm; Oh~ = 0.028.) x = 0.70, T = 10.75: present  result, x = 0.70, T = 10.96: 

Shokoohi  (1976, 1987). 

perturbation at the cut-off wavelength with an 'infinitely small amplification rate' (not shown). 
Similar effect was observed by Shokoohi (1976). 

An additional comparison between the present and the numerical solution of Shokoohi (1976) 
will be shown below (see figure 10) for the sizes of the generated drops. 

4.3. Liquid-liquid system 

The basic system we use in the calculations is water~odecan,  whose characteristic parameters 
are shown in appendix D. 

The values of  RN and 6o are the same as in the preceding section. The initial stream and vorticity 
functions are based on modified Tomotika (1935) solution. The modification is necessary for 
incorporating into the solution the radius Rm.x of  the rigid tube confining the continuous phase. 
The modified dispersion equation could be written in the form 

I I (x) I I (x,) K, (x) K~ (x2) L (x) I, (Xz) 
xlo(x) Xllo(x,) -xKo(x) -x2Ko(x2) xlo(x) x2Io(x2) 
2x2I,(x) (x 2 + x~)Ii(x~) 2#*X2Kl(X) ll*(x 2 + x~)K,(x:) 211*x2I,(x) ll*(x 2 + xZ)I,(x2) 
FI F2 F3 F4 F5 F6 
0 0 K, (y) K, (y2) I, (y) I, ( y j  
0 0 - yK o (y )  -y2Ko(yO ylo(y) y2Io(y2) 

- -0  

[261 
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where 

#* = #~ p* = P~ 
#1' pl 

iv2 y =  xRm,x y 2=  x2Rm,x 

1:1 = QZIo(x) + 2x2Oh, QI((x)  + x ( x  2 - 1)L(x) F2 = 2xx~Oh, QI((x,)  + x ( x  2 - 1)I,(x,) 

F3 = 2x2/l*Oh, QK~(x) - p*Q2Ko(x) F4 = 2xx2/~*Oh, QK~(x2) 

F5 = 2x2/~*Ohl QI((x)  + p*QZlo(x) F6 = 2xx2#*Oh, QI~(xO. 

In [26], L ( O  and K, (()  are the modified Bessel functions of  nth order, while I~ (~) and K.' (() denote 
their first derivatives in respect to (. This dispersion equation is equivalent to the dispersion 
equation obtained by Mikami and Mason (1975). When Rm,x ~ oo, [26] is reduced to the general 
Tomot ika  (1935) dispersion relation (for more details, see also Lee and Flumerfelt 1981). 

When [26] is solved the growth rate Q could be expressed as a function of  the wavenumber or 
any other of  the nondimensional parameters. In figure 4 the variation of Q with Rm,x is plotted 
for selected values of  the wavenumber. The effect of  the wall on the numerical solution is illustrated 
in figure 5. 

These figures show that the wall plays no role in the column instability when Rm,x >~ 5. Further 
on, the value of Rm,x is set equal to 5 along all the computations. 

An example of  the evolution of the interface profile in time is shown in figure 6 for t = 0-12.51. 
The wavelength corresponds to that of  the fastest growing disturbance. In the early stages, the 
surface contour has only one minimum at exactly 2/2. As the time increases, nonlinearities become 
important  and the initially cosinusoidal shape of  the interface changes to a more complex form. 
The zone of the minimum passes progressively through a 'plateau' ,  then two equal minima develop 
on both sides of  2/2 and move symmetrically toward the wavelength ends, giving rise to a satellite 
drop. 

From the experiments of  Mikami and Mason (1975) it could be expected that the amplitude of 
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the ini t ia l  be ing  as well as a cos inuso ida l  d i s t u r b a n c e  will g row (at least at the beg inn ing )  with the 
g r o w t h  rate  pred ic ted  by the l inear  theo ry  for the same  w a v e n u m b e r .  T o  test this in figure 7 the 
ca lcu la ted  a m p l i t u d e s  o f  the neck a n d  the swell o f  the d i s t u r b a n c e  are s h o w n  as func t ions  o f  t ime 
at  two different  w a v e n u m b e r s  o f  the range  o f  shor t  wavelengths .  C o n t i n u o u s  (s t ra ight)  lines 
represen t  the c o r r e s p o n d i n g  a m p l i t u d e s  predic ted  by the l inear  theo ry  so lu t ion  [1]• C o m b i n i n g  the 
o b s e r v a t i o n s  o f  figures 6 a n d  7 it cou ld  be c o n c l u d e d  tha t  the e v o l u t i o n  o f  the d i s t u rbances  a long  
the ini t ia l  t ime in te rva l  (t ~< 5 in figure 7) is well p red ic ted  by  the l inear  ins tab i l i ty  analysis .  

The  curves  t 6 (for  a given cross-sect ion)  based  on  the p resen t  num er i ca l  so lu t ion  cou ld  be used 
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Figure 5. Effect of the position of the rigid wall on the jet instability: interface profiles for different values 
of Rm~x at t = 11.25. ('Water~lodecan': 60 = 0.02, x = 0.70, R~ = 0.00175 cm; Oh~ = 0.031) - - ~  

Rmax : 2; Rm~x = 5; - - ,  Rmax = 9. 
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Figu re  6. E v o l u t i o n  o f  the in te r face  in time. ( ' W a t e r ~ l o d e c a n ' :  6o = 0.02; x = 0.66; RN = 0 .00175 cm;  
Oh~ = 0.031.)  T h r e e  s tages  are  observed:  cos inuso ida l  evo lu t ion ,  a p p e a r a n c e  o f  a ' p l a t e au ' ,  f o r m a t i o n  o f  

a satelli te a n d  b r e a k u p .  

for determining the ' instantaneous'  growth rate 

Q (ln 6) [27] 

at a given time t for a given wavenumber x. 
This equation allows us to test whether our numerical solution reproduces the growth rates 

derived in the experiments of  Mikami and Mason (1975). In figure 8 the experimental points 
correspond to two different liquid-liquid systems A and B whose characteristic parameters are 
shown in appendix D. (Note that in these experiments the jet radius is variable, while the tube (rigid 
cylinder) radius remains fixed.) The growth rates based on the numerical solution are in a close 
agreement to those related to the experiments. 

The above conclusion equally concerns the ratio I/R .... = 0.2 we are interested in as well as the 
other values of  this parameter  involved in the discussed experiments. 

1 . 0 0  

0 . 1 0  

x = 0 . 9 5  

0 . 0 1  . . . . . . . . .  ' . . . .  ' . . . .  ' . . . .  

0 5 1 0  1 5  2 0  2 5  

Figure  7. G r o w t h  o f  the d i s t u r b a n c e  a m p l i t u d e  in t ime for  a w a t e r  d o d e c a n  system.  (6, = 0.02, 
R~, = 0 .00175 cm:  Oh~ = 0.031.)  L inea r  so lu t ion:  N u m e r i c a l  so lu t ion:  + neck: O swell. 
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Figure 8. Nondimensional growth rate Q as a function of the nondimensional radius of the tube R .... 
(RsRm.x = 0.05 cm; (A): ~2/~] = 0.68; (B): IL,_/~L = 6.74.) O, @: experimental points (Mikami and Mason 
1975). V, V: numerical points (present work). The lines drawn are obtained from the linear theory [26]. 

F i g u r e  9 is s imi la r  in f igure 3, h o w e v e r  conce rns  a l i q u i d - l i q u i d  sys tem and  in a sense s u p p l e m e n t s  

f igure 7. T h e  la t te r  ind ica tes  that ,  in genera l ,  the  n o n l i n e a r  effects acce le ra te  the  b r e a k i n g  o f  the 

c o l u m n  (i.e. r educe  the  b r e a k - u p  t ime  in respect  to  its l inear  t h e o r y  value) ,  a t endency ,  which  in 

f igure 9 is d e m o n s t r a t e d  fo r  all uns t ab l e  w a v e n u m b e r s .  Th is  t endency  is m o r e  p r o n o u n c e d  for  the  

l i q u i d - l i q u i d  sys tem,  than  for,  the  l i q u i d - g a s  sys tem (see f igure 3), o w i n g  to the fact  tha t  the  
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Figure 9. Nondimensional growth rate Q and nondimensional breakup time T vs nondimensional 
wavenumber x. (Water~iodecan system: & = 0.02, RN = 0.00175 cm; Oh, = 0.031.) Q: - -  Linear 

theory. T: ~ Direct simulation; • Linear theory. 
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Figure 10. Nondimensional  drops radii R vs nondimensional  wavenumber x: water~lodecan system 
(present): V main drop, • satellite drop. Water -gas  system: O main drop, • satellite drop (present 

work), - -  main drop, - - -  satellite drop (Shokoohi). 

breakup times for the latter are shorter. However the wavenumber related to the minimal growth 
rate is one and the same both in linear and nonlinear approximation. 

One of the most interesting for the applications of the liquid jets is the size distribution of the 
drops resulting in the breakup versus the wavenumber. After determining the positions of the two 
breakup points along the wavelength, the volumes of the liquid contained in the main and satellite 
drops are calculated. The drops volumes are converted into the drops radii, assuming that the 
resulting drops will be spherical. Predicted distributions of the drops are shown in figure 10 for 
both systems: water-gas and water~lodecan. Our results for the water-gas system are compared 
(see continuous and dash lines) to those of  Shokoohi (1976) and show close agreement. Another 
comparison is presented in table 1, in which the main drops radii related to the present numerical 
method are compared to the experimental radii measured by Kitamura et al. (1982) for selected 
liquid-liquid systems. It should be mentioned that in these experiments the relative velocity between 
the phases has been maintained at different values: the present direct simulations correspond to 
the case of  zero relative velocity. 

Table I. Main drops diameter O: comparison between the experimental (Kitamura et al. 1982) and numerical (present) 
results. RN = 0.043cm for system 4-1 (Oh, = 0.003) and R~ =0.061 cm for the systems 1-1 (Oh, =0.003),  3 2 
(Oh~ = 0.130), 6-1 (Oh, = 0.054). The deviation between numerical and experimental results is less than 10%. The volume 
of  the satellite drop v,,~ is negligible in comparison to that of  the column v,,,. (For the characteristic parameters of  the 

systems, see appendix D.) 

System 2 v,,,/no, experimental numerical (main drop) Error (~b) 
no. ( ) (%) (cm) (cm) (%) 

1 1 9.41 0.53 0.237 0.234 1.27 
3-2 10.28 1.83 0.250 0.240 4.0 
4~1 9.61 0.32 0.183 0.168 8.2 
6-1 9.9 1.06 0.255 0.236 7.45 
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Table  2. Effect of  the init ial  ampl i tude  on d rops  sizes (RN = 0.00175 cm, x = 0.5). L iquid  1 Liquid  1: Oh~ - 0.031; Liquid  
3 -L iqu id  1: Oh~ = 0.001 

Satell i te Main  
& d rop  radius  d rop  radius  ~,~/v .... 

System ( ) ( ) ( ) (%) 

"Liquid 3 Liquid  1" 0.2 0.783 2.078 5.07 
0.1 0.854 2.067 6.58 
0.02 0.930 2 . 0 5 2  8.52 
0.001 0.937 2.051 8.69 
0.0001 0.937 2.051 8.69 

'L iqu id  1 Liquid  1' 
O. I 0.659 2.093 3.03 
0.02 0.696 2.089 3.57 
0.001 0.697 2.089 3.59 
0.0001 0.697 2.089 3.59 

In figure 10 it could be observed, that the drops size is mainly related to the wavenumber, when 
all other nondimensional parameters remain fixed. In the neighbourhood of the wavenumber 
related to the maximal growth rate (see figure 9) the satellite radius is comparatively small and 
the volumes of the liquid column and main drops differ slightly. An idea about this difference could 
be drawn from the third column of the table 1, where the volume of the satellites (not reported 
in Kitamura et al. 1982) is related to the total volume of the column (the latter could be easily 
determined in c m  3 by adding together the corresponding volumes of the third and fifth columns 
of table 1). In a connection to the table 1 the effect of the initial amplitude on the drop sizes remains 
to be studied. In table 2 this effect is shown for two liquid-liquid systems which differ from each 
other by the density of the column: the density of Liquid 3 is l0 times higher than that of Liquid 
1. Sufficiently small amplitudes do not change significantly the satellite drop size. However after 
some critical value of  the initial amplitude (in our simulations 60 = 0.2) the size of the satellite is 
reduced more appreciably. Similar observations have been reported in the paper of Ashgriz and 
Mashayek (1995). In table 2 this effect is more pronounced for the system Liquid 3-Liquid 1, whose 
breakup times are higher. 

The introduction of the effects of the continuous phase increases the number of the 
nondimensional parameters of the problem; from three for liquid-gas systems to six for 
liquid-liquid systems. The first three parameters (Ohnesorge number, wavenumber and initial 
amplitude) could be varied independently of the properties of the continuous phase. The next three 
parameters (densities, viscosities and cylinder-to-column radii ratios) stand for the continuous 
phase effects. In the present paper we do not intend to display all the results, obtained by a 
systematical variation of the parameters. An idea about the influence of the continuous phase 
density on the column instability could be derived from figure 11. Here the interface profiles before 
breaking are drawn for three different values of the densities ratio. In general, with the decreasing 
of  the continuous phase density (at fixed other parameters) the satellite volume (as well as the 
radius) increases while for the breakup time, the opposite tendency is observed. It should be 
mentioned that in our computations the range of the Ohnesorge number remains rather limited, 
due to the fact that the viscosity of the column is of the order of the water viscosity. With the 
increasing of the column viscosity, the convergence of our numerical method becomes slower, the 
corresponding time step decreases below 10 s. For Oh~ > 3 the evolution of the disturbance 
remains within the initial cosinusoidal stage. This behaviour of the solution was observed when 
we attempted to determine the radii of the resulting drops for comparing them to those measured 
by Mikami and Mason (1975). The problem of the convergence of the present method for high 
viscous columns remains open. 

5. CONCLUSION 

A finite difference iterative method is developed for solving the equations of motion and 
boundary conditions that govern the instability and breakup of a liquid column surrounded by 
another immiscible fluid. 
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Figure 11. Effect of the continuous phase density on the column breakup. (x = 0.70. ,~0 = 0.02, 
RN=0.00175cm; Ohj=0.031.)--Water~lodecan. T= 12.52;---Liquid 1 Liquid 2. T= 11.82; 

Liquid 1-gas, T= 10.91. 

The numerical solution involves six nondimensional parameters: wavenumber, Ohnesorge 
number, initial amplitude, as well as densities, viscosities and cylinder-to-column radius ratios. The 
method has been applied to two selected systems: water-gas and water-dodecan for particular 
values of  the nondimensional parameters. The full range of the parameters variation remains to 
be studied separately. 

The water-gas system has been used as a 'test system' for the present direct simulations. The 
comparison shows close agreement to the numerical results of Shokoohi (1976) concerning the 
instantaneous interface profile, as well as the resulting main and satellite drops sizes. 

Our numerical method has been tested as well to the experimental results of Kitamura et al. 
(1982), being obtained for liquid-liquid systems of zero relative velocity between the inner and the 
outer phases. 

In general the presence of the continuous phase accelerates the appearance of the nonlinear 
evolution of the disturbance. However the common tendency manifested within the linear theory 
approximation remains unchanged: the breakup time increases when the density (respectively, 
viscosity) of the continuous phase increases. 
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A P P E N D I X  A 

Transformation Matrix 

According to the coordinate transformation t/j = ( R j -  r ) / ( R j -  Rs) and 4 = z, the derivative 
operators in respect to the cylindrical coordinates (r, z) are expressed in respect to the new variables 
(tb, 4) by the following matrix relation 

{D":} = [T,.I{D ",'~} [All 

where {D":} and {D "/'~} are 9 * t column matrices 

{0 
3 02 0 03 02 03 0 02 03"l T 

{ Dr:} = ~3,  Or 2, Or' Or 2 Oz' Or Oz' Or Oz 2' Oz' Oz 2' Oz3J [A2] 

f0~j.3 02 0 03 02 03 0 02 :_~ }T. 
{D"¢} = ' 0t/:' 0r b' 0t/) 04' 0t/j 04' 0t/j 042, 04' 04:' 

The elements of the transformation matrix [~] are as follows 

~(1,  I) = - d  

~(2, 2) = E 2 

~ ( 3 ,  3) = - c j  

~(4, 1) = qjE27j; ~(4, 2) = 2EjzTj; Ts(4, 4) = e 2 

~(5, 2) = --t/jEsYA ~(5, 3) = --EjTj; T/(5, 5) = -E, 

[A3] 
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~(6, 1) = -r/2e,7~; Tj(6, 2) = - q j e j ( 4 y  ] + erR"); Tj(6, 3) = --ej(2y 2 + erR" ) 

~(6 ,4 )  = --2rbejyj; ~(6, 5) = -2ej7j; ~ (6 ,6 )  = - e ,  

~ (7 ,3 )=u jT j ;  ~ ( 7 , 7 ) = 1  

Tj(8, 2) = r/272; ~(8,  3) = rb(272 + e/R;'); ~(8, 5) = 2rb7 A ~(8, 8) = ] 

~(9 ,  ]) = rt).;); ~ (9 ,  2) = 3r/27;(2",,,2 + E~R~'); ~ (9 ,  3) = Uj(67) + ~;'y;R;' + (:R:") 

~(9, 4) = 3r/27~; ~(9,  5) = 3rlj(ejR:' + 277); ~(9, 6) = 3r/iTs; ~(9, 9) = 1. [A4] 

All other elements are zeroes; j denotes the corresponding phase and 

1 ORs. O2R~ O3R~ [A5] 
R~ = ( j -  1)Rmax; e j  - R j  - Rs; 7~ = erR(; R~ = Oz ' R"  = 3z ~ ; R:" - ~z 3 . 

[~] is a 9 * 9 lower triangular matrix. Thus, the expression of the lth element of {D',:} in the 
new coordinates is given by 

m = l  

D""(I) = ~ T~(l ,m)D",~(m).  [A6] 
m 1 

In addition, the time derivative is transformed as 

where 

~5 = N  +,TjEjvf [A7] 

Vr= V ~ - U ~  8R~ Yzz [A8] 

A P P E N D I X  B 

Elimination o f  the Pressure Term in the N o r m a l  Stress Condition 

Equation [11] gives 

+ ~ s i n 2 ~  - \ O z  sin2~ + \  R~ R"cos  3~ . 

Let us replace this expression by 

Then noting that 

Eel = ~ev~ + (PC). 

[m] 

[B2] 

c3q = cos c~ = cos ~ - ~  [B4] 

[Bs] 

with 

c 3 q - C ° S ~  at r b =  1 [B3] 

where q is the curvilinear coordinate, the differentiation of the pressure difference [B2] along the 
surface gives 
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Using the Navier-Stokes equations, one can obtain another expression of 

The (U, V, P) nondimensional forms of the Navier Stokes equations are 

where 

p, D l  = --~r-r -t- Ohl--[tl A V  - 

p D U _  O P + o h ~  ~ A U  
pl Dt c~z Iz~ 

02 1 ~ &' 
= - 7 -  + g,2. k ~C~r2+rc r . 

In both phases, p~ U 2 has been used as a characteristic pressure. 
By definition 

~P OP ~P 
- + E;R~'T:7.. at r//= 1. ?z 04 crl 

Thus 

[B61 

[B71 

[BS] 

[B91 

~ -  = ~M~. [B121 

~M~ = [ t?(PV) ,.13, 

Equation [B13] is then transformed to [23] using relations [2] and appendix A. In this section, 
subscript j has been omitted. 

A P P E N D I X  C 

Coefficients in [19]-[23] and [25] 

Setting X = 1/Rs, Z = Oh~v/v~, Oh = OhRpj/p~, r = [qjRs + Rj(1 - ~b)] the coefficients are: 

al ,  = Z ( E f i  -4- t f f y ? ) ,  a2, = [ Z ( r - ' ( - - E j )  -1- rb(2,/2 + 6R")) -- (rbE, Vf - ~.jVj .Af- q j y j U j ) ]  

as, = 2Z?~jy j ,  a4, = - -Uj ,  as, = Z ,  a6, = r - ' (Vj  - r - ' Z )  [C1] 

b,. = (r/~,/2 + e~), bz, = (rb(27) + e,R;') + f.jr-l), b3/= 2r/iT, [C21 

[Bll] 

We thus have 

Let us write [B11] as 

[ P (Of-l- /1 "t-Rs(AV-- 

c~P c~P ~?P [BIO] 

Substituting in each phase c~P/c~r and ?~P/c~z by their expressions given, respectively, by [B6] and 
[B7], one easily comes to the difference 
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Cb = ~1 

gl  i = r 1 

t an  2~ + y2 _ ;(e2), 

g2i = r//yjr-~; g3, = Ejr -~ 

/~J ;([(--;(~j -- 2e~Tj)tan 2e  + (27~ + EjR~') --  ;(Ej] 
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[c3] 

/~_..z, ) ( - e J  t an  2ct + ?j), c4j t an  2~, c5, = #~ Z C3j = 2/~1 = - ~  Z2 PJ [C4] 

d , / =  - O h ) @  + 2e#/~ + 73R;), d2, = - O h z [ 6 y ~ ( e j  + y/R;)  + R~'(37~ + • )  + Z(7~ + d ) ]  

d3i = Ohesz[2ejR22() - 2ei) + R"2(-2  cos  z e cos  2c 0 - Rs"' sin 2ct --  2R"(Ej + sin 2 ct(Ej -- X))] 

--Ohx[c~(;(  2 + 2'/7 + esR~') + 7~Z + 7~(6y~R~' + 67jR# + R~")] 

+ Z ~  (1 + R~ ) + U~zR; + U~R~(Ej+ yjR; + R") 

d4 s = --3OhzejVs(1 + R 22) 

d6, = - 3Ohzej(1 + Rs ), dTj = 2 O h z  2 sin 2ct(X + R2' cos  2 ~) + Z ~ ~ Azz - 7U~R2 

ds, = - 2 O h z  cos  2e(Z  + R"  cos  2 ct) + )~U~R2 pj  d9j = - O h z ( s i n  2c~ + R2) p l '  

s = [X sin e(Z + cos  2 e R " )  + cos  3 c~R" - 3 s in e cos  4 ctR~':] + ~ 1 --  (Us" + R2 ~ )  [C5] 

where  n d e n o t e s  the  p r e v i o u s  t ime  step,  ej, 7j . . . .  are de f ined  in a p p e n d i x  A.  

bw = [Rm~x(Rm.x --  R~)2] -1. [C6] 

A P P E N D I X  D 

Characteric Parameters of Different Liquid-Liquid Systems lnvolved in this Paper List of the 

Systems Systems Density p~ Density p2 Viscosity pt Viscosity/~2 Surface tension au  
no. Inner liquid (1)-Outer fluid (2) (g/cm 3) (g/cm 3) (poises) (poises) (dyne/cm) 

l-lt 
3-2# 
4 - 1 t  
6--lt 

AS 
B~ 

Water -gas  1.0 0.0 0.01 0.0 72.5 
Water -Dodecan  1.0 0.748 0.01 0.0135 47 
Liquid 1-gas 1.0 0.0 0.01 0.0 47 
Liquid 1-Liquid 2 1.0 0.374 0.01 0.0135 47 
Liquid l -Liquid  1 1.0 1.0 0.01 0.01 50 
Liquid 3-Liquid 1 I0.0 1.0 0.01 0.01 50 
n-Heptane-water  0.676 0.996 0.00403 0.00829 51.2 
Kerosene + liquid paraffin-water 0.848 0.998 0.188 0.0103 40.2 
n-Heptane-aq ,  sol. of  starch syrup 0.683 1.126 0.00407 0.0371 56 
Kerosene + liquid paraffin- 

aq. sol. o f  Starch syrup 0.831 1.117 0.08 0.0278 43 
Silicone oil 1000-Castor oil 0.973 0.959 10.7 7.28 5.2 
Silicone oil 100-Castor oil 0.968 0.959 1.08 7.28 4.6 

tThe  systems of  this numerat ion are drawn from the paper of  Ki tamura  et al. (1982). 
:~The systems of these symbols are from the paper of  Mikami and Mason (1975). 


